Мантия Земли

Силикатная оболочка Земли, её мантия, расположена между подошвой земной коры и поверхностью земного ядра на глубинах около 2 900 км. Обычно по сейсмическим данным мантию делят на верхнюю (слой В), до глубины 400 км, переходный слой Голицына (слой С) в интервале глубин 400-1000 км и нижнюю мантию (слой D) с подошвой на глубине примерно 2 900 км. Под океанами в верхней мантии выделяется ещё и слой пониженных скоростей распространения сейсмических волн — волновод Гутенберга, обычно отождествляемый с астеносферой Земли, в которой мантийное вещество находится в частично расплавленном состоянии. Под континентами зона пониженных скоростей, как правило, не выделяется либо слабо выражена.

В состав верхней мантии обычно включаются и подкоровые части литосферных плит, в которых мантийное вещество охлаждено и полностью раскристаллизовано. Под океанами мощность литосферы меняется от нуля под рифтовыми зонами до 60-70 км под абиссальными котловинами океанов. Под континентами толщина литосферы может достигать 200-250 км.

Наши сведения о строении мантии и земного ядра, а также о состоянии вещества в этих геосферах получены в основном по сейсмологическим наблюдениям, путём интерпретации годографов сейсмических волн с учётом известных уравнений гидростатики, связывающих между собой градиенты плотности и значения скоростей распространения продольных и поперечных волн в среде. Методика эта была разработана известными геофизиками Г. Джефрисом, Б. Гутенбергом и особенно К. Булленом ещё в середине 40-х годов и затем существенно усовершенствована К. Булленом и другими сейсмологами. Построенные по этой методике распределения плотности в мантии для нескольких наиболее популярных моделей Земли в сопоставлении с данными ударного сжатия силикатов (модель НС-1) приведены на рис. 10.

Рисунок 10. Распределение плотности в мантии Земли по разным моделям:

Рисунок 10. Распределение плотности в мантии Земли по разным моделям:
1 — модель Наймарка-Сорохтина (1977а); 2 — модель Буллена А1 (1966); 3 — модель Жаркова «Земля-2» (Жарков и др., 1971); 4 — пересчёт данных Панькова и Калинина (1975) на состав лерцолитов при адиабатическом распределении температуры.



Как видно из рисунка, плотность верхней мантии (слоя В) с глубиной увеличивается от 3,3-3,32 примерно до 3,63-3,70 г/см3 на глубине около 400 км. Далее в переходном слое Голицына (слое С) градиент плотности резко возрастает и плотность повышается до 4,55-4,65 г/см3на глубине 1 000 км. Слой Голицына постепенно переходит в нижнюю мантию, плотность которой плавно (по линейному закону) возрастает до 5,53-5,66 г/см3 на глубине её подошвы около 2 900 км.

Увеличение плотности мантии с глубиной объясняется уплотнением её вещества под влиянием все возрастающего давления вышележащих мантийных слоев, достигающего на подошве мантии значений 1,35-1,40 Мбар. Особенно заметное уплотнение силикатов мантийного вещества происходит в интервале глубин 400-1000 км. Как показал А. Рингвуд, именно на этих глубинах многие минералы испытывают полиморфные превращения. В частности, наиболее распространённый в мантии минерал оливин приобретает кристаллическую структуру шпинели, а пироксены — ильменитовую, а затем и плотнейшую перовскитовую структуру. На ещё больших глубинах большинство силикатов, за исключением, вероятно, только энстатита, распадаются на простые окислы с плотнейшей упаковкой атомов в соответствующих им кристаллитах.

Факты движения литосферных плит и дрейфа континентов убедительно свидетельствуют о существовании в мантии интенсивных конвективных движений, неоднократно перемешивавших за время жизни Земли все вещество этой геосферы. Отсюда можно сделать вывод, что составы и верхней и нижней мантии в среднем одинаковые. Однако состав верхней мантии уверенно определяется по находкам ультраосновных пород океанической коры и составам офиолитовых комплексов. Изучая офиолиты складчатых поясов и базальты океанических островов, А. Рингвуд ещё в 1962 г. предложил гипотетический состав верхней мантии, названный им пиролитом, получаемый при смешении трёх частей альпинотипного перидотита — габсбургита с одной частью гавайского базальта. Пиролит Рингвуда близок по составу к океаническим лерцолитам, подробно изученным Л.В. Дмитриевым (1969, 1973). Но в противоположность пиролиту океанический лерцолит является не гипотетической смесью пород, а реальной мантийной породой, поднявшейся из мантии в рифтовых зонах Земли и обнажающейся в трансформных разломах вблизи от этих зон. К тому же Л. В. Дмитриев показал комплиментарность океанических базальтов и реститовых (остаточных после выплавки базальтов) гарцбургитов по отношению к океаническим лерцолитам, доказав тем самым первичность лерцолитов, из которых, следовательно, выплавляются толеитовые базальты срединно-океанических хребтов, а в остатке сохраняется реститовый гарцбургит. Таким образом, ближе всего составу верхней мантии, а следовательно, и всей мантии соответствует описанный Л. В. Дмитриевым океанический лерцолит, состав которого приведён в табл. 1.

Таблица 1. Состав современной Земли и первичного земного вещества
По А. Б. Ронову и А. А. Ярошевскому (1976); (2) Наша модель с использованием данных Л. В. Дмитриева (1973) и А. Рингвуда (Ringwood, 1966); (3) H. Urey, H. Craig (1953); (4) Флоренский К. П., Базилевский Ф. Т. и др., 1981.
Окислы Состав континентальной коры(1) Модельный состав мантии Земли(2) Модельный состав ядра Земли Состав первичного вещества Земли (расчёт) Средний состав хондритов(3) Средний состав углистых хондритов(4)
SiO259,345,530,7838,0433,0
TiO20,70,60,410,110,11
Al2O315,03,672,522,502,53
Fe2O32,44,15
FeO5,64,3749,3422,7612,4522,0
MnO0,10,130,090,250,24
MgO4,938,3525,7723,8423,0
CaO7,22,281,561,952,32
Na2O2,50,430,30,950,72
K2O2,10,0120,0160,17
Cr2O30,410,280,360,49
P2O50,20,38
NiO0,10,07
FeS6,692,175,7613,6
Fe43,4113,111,76
Ni0,560,181,34
Сумма100,0100,0100,0100,099,4898,39


Кроме того, признание существования в мантии конвективных движений позволяет определить и её температурный режим, поскольку при конвекции распределение температуры в мантии должно быть близким к адиабатическому, т.е. к такому, при котором между смежными объёмами мантии не происходит теплообмена, связанного с теплопроводностью вещества. В этом случае теплопотери мантии происходят только в её верхнем слое — через литосферу Земли, распределение температуры в которой уже резко отличается от адиабатического. Но адиабатическое распределение температуры легко рассчитывается по параметрам мантийного вещества.

Для проверки гипотезы о едином составе верхней и нижней мантии были проведены расчёты плотности океанического лерцолита, поднятого в трансформном разломе хребта Карлсберг в Индийском океане, по методике ударного сжатия силикатов до давлений около 1,5 Мбар. Для такого «эксперимента» вовсе не обязательно сжимать сам образец породы до таких высоких давлений, достаточно знать его химический состав и результаты ранее проведённых опытов по ударному сжатию отдельных породообразующих окислов. Результаты такого расчёта, выполненного для адиабатического распределения температуры в мантии, были сопоставлены с известными распределениями плотности в этой же геосфере, но полученными по сейсмологическим данным (см. рис. 10). Как видно из приведённого сравнения, распределение плотности океанического лерцолита при высоких давлениях и адиабатической температуре неплохо аппроксимирует реальное распределение плотности в мантии, полученное по совершенно независимым данным. Это свидетельствует в пользу реальности сделанных предположений о лерцолитовом составе всей мантии (верхней и нижней) и об адиабатическом распределении температуры в этой геосфере. Зная распределение плотности вещества в мантии, можно подсчитать и её массу: она оказывается равной (4,03-4,04)×102 г, что составляет 67,5% от общей массы Земли.

На подошве нижней мантии выделяется ещё один мантийный слой толщиной около 200 км, обычно обозначаемый символом D’’, в котором уменьшаются градиенты скоростей распространения сейсмических волн и возрастает затухание поперечных волн. Более того, на основании анализа динамических особенностей распространения волн, отражённых от поверхности земного ядра, И.С. Берзон и её коллегам (1968, 1972) удалось выделить тонкий переходный слой между мантией и ядром толщиной около 20 км, названный нами слоем Берзон, в котором скорость поперечных волн в нижней половине убывает с глубиной от 7,3 км/с практически до нуля. Снижение же скорости поперечных волн можно объяснить лишь уменьшением значения модуля жёсткости, а следовательно, и уменьшением коэффициента эффективной вязкости вещества в этом слое.

Сама граница перехода от мантии к земному ядру при этом остаётся достаточно резкой. Судя по интенсивности и спектру отражённых от поверхности ядра сейсмических волн, толщина такого пограничного слоя не превышает 1 км.

Следующая статья   |   О. Г. Сорохтин: «Развитие Земли»